PCM/ECM/TCM Internal Temperature Sensor Circuit High


One of these system control modules (powertrain control module, engine control module, or transmission control module) has detected an internal temperature sensor circuit malfunction that could potentially prove catastrophic. The engine and transmission control modules are commonly integrated into a single module, called the powertrain control module.

Code Set Parameters

Every control module is programmed with certain self-test and self-preservation data. The module over temperature function is designed to alert the driver of a potential serious internal malfunction. If the voltage reading of the internal temperature sensor of the module in question reaches a level that exceeds the manufacturer’s recommended specifications, a code will be stored and a service engine soon lamp will be illuminated.


Symptoms may vary between only a stored code and service engine soon lamp illumination to an engine stall and a no start condition. The conditions required to set this code are typically catastrophic for the module in question.

Common Causes

Far and away, the most common cause of this code being stored is a defective control module. Shorted wiring has also been known to contribute to this code being stored, in extreme and rare scenarios.

Common Misdiagnosis

Technicians report multiple control module failures are associated with shorted ground wiring to the affected module/s.


  • Individual control modules are equipped with integrated temperature sensors, to aid in self testing and self preservation strategies
  • Begin your diagnosis by testing all power and ground circuits for the affected module
  • Compare your findings with manufacturer’s specifications and make necessary repairs
  • Be sure to clear all trouble codes and retest the system in order to ensure that the condition is rectified
  • If all power and ground circuits align with the manufacturer’s specifications, suspect a faulty control module
  • Control module replacement will also require reprogramming it to match the vehicle. CAN is the abbreviation for “controller area network.” The CAN represents a communication bus that allows multiple microcontrollers to communicate with one another without the need for a host computer
  • It is a message based protocol originally designed for automotive use
  • The CAN bus network is actually a complex conglomeration of wiring harnesses and connectors used as a pipeline of information shared between two or more automotive control modules
  • These controllers control virtually every electrical function of the vehicle, with the PCM being the primary controller
  • Control modules receive input data from various sensors and emit output signals to system components and other control modules
  • For example: The PCM receives an input signal from the vehicle speed sensor
  • This signal is systematically forwarded to affected control modules that utilize the data to accomplish various other tasks
  • The cruise control module uses the data for speed control purposes, the traction control system uses the data to regulate vehicle traction control strategy, and the anti lock brake controller compares vehicle speed from the PCM with data inputs from individual wheel speed sensors to operate the anti lock braking system. Several tools will be instrumental in attempting to successfully diagnose this code
  • A suitable OBD-II scanner (or code reader) and a digital volt/ohmmeter will be most helpful in trying to perform a successful diagnosis
  • Begin with a visual inspection of all wiring and connectors
  • Repair or replace damaged, disconnected, shorted, or corroded wiring, connectors, and components as necessary
  • Always retest the system after repairs are completed to ensure success. If all system wiring, connectors, and components (Including fuses) appear to be in normal working order, connect the scanner (or code reader) to the diagnostic connector and record all stored codes and freeze frame data
  • This information can be extremely helpful in diagnosing intermittent conditions that may have contributed to this code being stored
  • Continue by clearing the code and operating the vehicle to see if it returns
  • This will help to determine whether or not the malfunction is intermittent
  • After the codes are cleared, test drive the vehicle to see if the code returns
  • If the code fails to immediately return, you may have an intermittent condition
  • Intermittent conditions can prove to be quite a challenge to diagnose and in extreme cases may have to be allowed to worsen before a correct diagnosis can even be attempted
  • Unlike other diagnostic codes, this type of code can sometimes be best left to a professional simply because of the bulk of circuitry involved
  • An experienced technician with a specialized scanner (Autohex or Tech II) may be able to determine the general area of the malfunction much more rapidly and easily than someone using a code reader and a digital volt ohmmeter
  • Disconnecting and testing every single pin of the CAN bus could prove to be extremely time and cost prohibitive
  • Additionally, some type of memory saving device must be installed, lest the PCM and other controllers lose their memory and require reprogramming
  • A specialized diagnostic CAN scanner will show pin values and control module operation without risking a meltdown
  • It can accurately diagnose computer and circuitry problems by monitoring vehicle operation while the vehicle is being operated
  • To diagnose this type of code using a digital volt ohmmeter would entail probing thousands of circuits, independently
  • One misplaced probe could destroy expensive control modules and require that the vehicle be totally reprogrammed. At the most, you may attempt to perform a continuity test after all control modules are disconnected, and this could literally require 40-hours or more, depending upon the vehicle
  • Some applications are equipped with up to 18 separate control modules. If you choose to tackle this monumental task, begin with a careful visual inspection of all system circuitry, connectors, and fuses
  • Control module ground circuits should be tested for continuity with battery ground
  • These types of codes are frequently caused by defective or disconnected system grounds
  • An auxiliary ground cable can be helpful in diagnosing system ground discrepancies
  • Engine and transmission ground cables, straps, and wires are sometimes left dangling after repairs are performed
  • Look for loose or corroded electrical connectors that may increase circuit resistance and cause these types of codes to be stored. Obtain a CAN bus system wiring diagram and/or pin out value chart, then use the digital volt ohmmeter to test continuity between individual controller connectors
  • Compare your findings with the manufacturer’s referenced values and repair open or shorted circuits as required
  • It is often much more frugal to replace defective wiring rather than attempting to remove it from the complex web of wiring harnesses